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We present simulation results on the ordering dynamics of the fully frustrated XY model (FFXYM) in a
two-dimensional square lattice which possesses O(2)XZ, symmetry, using the Langevin dynamics approach
with initial disordered state quenched to low temperature. The spin correlation functions satisfy a critical
dynamic scaling of the form Cg(r,t)=r""Dg(r/Lg(t)) where 7(T) is the critical exponent for the equilib-
rium spin correlation function at temperature 7 and Lg(t)~t"*sD. Ising correlation due to the extra Z,
symmetry shows a dynamic scaling behavior C(r,t)=g/(r/L (t)) with L (¢)~¢"(D), Both dynamic expo-
nents 1/zg and 1/z; are strongly temperature-dependent increasing in proportion to 7' at low temperature.
Simulation shows that there exist two regimes with distinct domain growth morphology. A qualitative expla-
nation of these features is given in terms of the interplay between thermal fluctuations and the long range

nature of the interaction between point defects.

PACS number(s): 64.60.Cn, 64.60.Ht, 64.60.My, 82.20.Mj

When statistical systems are quenched from a disordered
phase to an ordered phase, they evolve into an ordered phase
via the growth of ordering regions. The average size of or-
dered domains grows with time and becomes the dominant
length scale at the late stage of the ordering processes which
leads to a simple dynamic scaling in the order parameter
correlation functions. Predicting how the average domain
size grows with time and computing the scaling functions
from first principles are a few fundamental issues in this area
[1]. Recent interest in this field is mainly concentrated on
systems with continuous symmetry [2—4]. For these systems,
the continuous nature of order parameter space allows rich
stable topological defects such as vortices, strings, and
monopoles which are shown to play crucial roles as disor-
dering agents in the coarsening processes [5].

Now, if a system has both discrete and continuous degen-
eracies in its ground states, one can anticipate that its order-
ing dynamics may be richer and more interesting. Here, we
investigate the ordering dynamics of the fully frustrated XY
model (FFXYM) in a two-dimensional square lattice. In
equilibrium, this model can be realized physically as two-
dimensional arrays of Josephson junctions under magnetic
fields of half flux quantum (f=3) per unit plaquette. It is
well known that the pure XY model undergoes a Kosterlitz-
Thouless (KT) transition at the temperature Ty due to the
unbinding of bound vortex pairs [6]. For FFXYM the system
possesses additional discrete Ising-like Z, symmetry corre-
sponding to the double degeneracy of the chirality configu-
ration as well as continuous O(2) symmetry corresponding to
the global uniform phase rotation, leading to the new Ising-
like phase transition at the temperature 7,. Numerically,
Txr and T; for FFXYM are very close to each other
(Txr=T,;~0.45]/kp), even though there are still controver-
sies as to whether the two transitions occur at exactly the
same temperature or at close but distinct temperatures [7].

Hence, in this system, the line defects associated with the
discrete Ising symmetry coexist with the point defects
(which turn out to be the corners of the line defects) associ-
ated with the continuous O(2) symmetry and the interaction
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between these defects play an important role in the ordering
processes [8]. We focus mainly on the temperature depen-
dence of scaling exponents associated with the growth of the
two kinds of order parameters by quenching the system to
various final temperatures below both Tx; and T;. Simula-
tions show that spin correlations satisfy critical dynamic
scaling, while the Ising correlation follows simple dymamic
scaling. Growth exponents for both correlation functions are
strongly temperature dependent with linearly proportional
dependence in T at very low temperature. In the limit of zero
temperature, the growth process becomes indefinitely slow
and zero temperature freezing is observed. Another interest-
ing feature of the growth dynamics of this system is that
there exist two temperature regimes with qualitatively differ-
ent characteristics of domain growth, especially that of mor-
phology of Ising domain walls which is manifested in the
relaxation scaling behavior of various quantities. For quench
to a low temperature below Txz=0.3J/kp, we observe the
faceted growth of domain walls where line defects are
mostly straight with a relatively few number of corners
(point defects). On the other hand, for quench to an interme-
diate temperature above Ty (and of course below 7; and
Txr), we observe microscopically rough line defects with a
dense distribution of corners. We attribute these features to
the interplay between thermal fluctuations and the long range
nature of the interaction between point defects that gives rise
to a chemical potential for creating a pair of corners.
The system is defined by the following Hamiltonian:

H= —J(E) cos(6,— 6;—27f,}), 1)
ij

where 6; is the phase angle of the planar spin S ; at site / and
(ij) denotes the summation over nearest neighbors. The frus-
tration of the model is determined by f;; with
[=Zuperfij= 1 where P denotes a unit plaquette. The dy-
namics is assumed to be purely dissipative (with noncon-
served order parameter) and governed by the following
Langevin equation:
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90,/ 9t=—T((6H({6x.f})1/ 86;) + Li(1), 2

where I' is the kinetic coefficient and the thermal noise
Zi(¢t) is chosen to be a white Gaussian with zero mean and
with the variance satisfying the detailed balance at tempera-
ture 7T,

(L) L(¢"))=2TkpT &;;8(t—1"). ©)

Equation (2) together with Eq. (3) is integrated in a straight-
forward way by using the Euler method with periodic bound-
ary condition. Most simulations were performed on lattices
of size N,XN,=128X128 with the integration time step
At=0.05 and the results were averaged over 30 different
random initial configurations.

The main quantities of interest are spin correlation and
chiral correlation functions. The so-called zero momentum
gauge-invariant spin correlation is defined as follows:

Cs(r,l‘)=<N1NE COS( Oiv,— O;+2m X, fkk')>, 4)
Ny

(kk')ey

where ( ) denotes the average over random initial configu-
rations and 7 represents the path along which the correlation
function is calculated. For convenience, we evaluated the
spin correlation for only even lattice spacing along the x and
y axes (the gauge term drops out in this case) and took the
average over the two results. The staggered chirality for a
plaquette Py with the Cartesian coordinate of its center at
R=(R,,R)) is defined as

Pp

x(R)=(— 1)x+y5gn{2 (6;— 60;+2mf;;) —27fpind (0;— 6;

where fp;, is the nearest integer function and the dual lattice
vector is R=(R,,R,)=[(x+1/2)ay,(y+1/2)ay] with ag
the lattice spacing which will be taken to be 1 from now on.
The chiral (Ising) correlation function is defined as

1
NN,

i

c,(r,t>=< > xi+,xl->. (6)

Due to the existence of these two kinds of order param-
eters the relaxation and ordering process proceeds via anni-
hilation of two kinds of defects, i.e., point defects [corre-
sponding to O(2) symmetry] and line defects (domain walls
corresponding to chiral symmetry). Point defects are the cor-
ners of line defects where fractional charges of magnitude
i reside [9]. Hence, the annihilation processes of these two
kinds of defects are closely coupled to each other. At finite
temperatures below Txr and T; (Txr~T;~0.45J/kg), the
ordering dynamics shows an interesting temperature depen-
dence. Spin correlation satisfies (similarly to the case of the
pure XY model) a critical dynamic scaling [10]

Cs(r,t)=r""Dgs(r/Lg(1)), (7

where 7(T) is the critical exponent for the equilibrium spin
correlation function at temperature T and L g(¢)~ s, while
the chiral correlation obeys the following usual scaling form

C(r,t)=g(r/L (1)) ®

with L (t)~t"1, Though there is no analytic result known
for the temperature dependence of the critical exponents
7(T), zg(T), and z;(T) for FFXYM, in contrast to the case
of the pure XY model, our estimates for the exponent 7(T)
are a little larger than the values obtained from the recent
extensive (equilibrium) Monte Carlo simulations carried out
by Ramirez-Santiago and Jose [11]. Regarding the dynamic
exponents, to our knowledge, our results provide the only
numerical estimates for their temperature dependence. We
also find it interesting that the short distance behavior of the
chiral scaling function g,(x) satisfies the generalized Porod’s
law [3,4,12] g(x)=1—a(T)x*D, where a(T) is the tem-
perature dependent amplitude and the exponent ¢(7) de-
creases continuously starting from Ising value 1 near zero
temperature as the final quenching temperature becomes
higher [13].

Figures 1(a) and 1(b) show the scaling collapse of spin
correlation, and chiral correlation, respectively, at
kpT=0.2J. The inset of Fig. 1(a) shows the temperature
dependence of 7 that exhibits an approximately linear in-
crease in T at low temperature. As mentioned earlier, these
values obtained from the dynamic scaling collapse are a little
bigger than the equilibrium Monte Carlo results (on a smaller
lattice size) and more detailed simulation is needed to re-
solve the discrepancies. Note that the exponents 1/zg and
1/z; are appreciably smaller than 0.5 at kz7=0.27. Our
simulations show that, in contrast to the case of the pure XY
model, these exponents (1/zg and 1/z;) depend strongly on
temperature especially at the low temperature regime which
is shown in the inset of Fig. 1(b). We can see that these two
exponents increase approximately linearly in T at low tem-
peratures and then they saturate at around kp7~0.35J with
saturation values of around 0.45 for 1/zg and 0.5 for 1/z;. In
addition, we find that the two exponents are quite close to
each other for the low temperature regimes. However, 1/z;
tends to be slightly larger than 1/zg as the temperature gets
larger than kpT'=0.2].

In order to help our understanding of these temperature-
dependent dynamic exponents, we looked into the snapshots
at various time instants of ordering configurations in terms of
staggered chirality. Figures 2(a) and 2(b) show the ordering
processes for a quench to low temperature and higher tem-
perature (kgT=0.1J and kzT=0.4J, respectively), where
domains with opposite Ising order parameter (staggerred
chirality value) are denoted with different shades. We can
clearly see a distinctive feature in the domain growth mor-
phology for the low and high temperature systems. That is, at
low temperature, the domain walls (line defects) become
more and more straight in time with faceted (square shaped)
boundaries, while at higher temperature the domain walls
remain rough microscopically all along the ordering process.
Slow ordering for the case of low temperature (kg7T=0.1])
relative to that of high temperature (kT =0.4J) is apparent
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FIG. 1. Scaling collapse of spin correlation (a) and chiral corre-
lation (b) at kzT=0.2] for FFXYM with lattice size 128X 128,
which gives 1/z3=0.37, n(kzT=0.2J)=0.08, and 1/z;,=0.38. The
inset of (a) shows the temperature dependence of 7(T) obtained
from critical dynamic scaling and the inset of (b) shows the tem-
perature dependence of 1/zg and 1/z;. Error bars for quantities in
the inset of (b) are a few times the size of the symbols.

from these figures in agreement with the temperature depen-
dence of 1/z; obtained from scaling collapse of chiral corre-
lation functions.

In relation to the above morphological features, it would
be interesting to calculate the time dependence of the number
of point defects (=N ) and that of the total length of the line
defects (=N,) and compare the results with other exponents
already presented. We found from simulations that they show
power law decay behavior in time with temperature-
dependent exponents. That is, we get N,~t"'» and
N;~t~". These exponents together with 1/zg and 1/z; are
shown in Fig. 3 as functions of the temperature. We can
recognize that there exists a temperature scale (=13) which
roughly divides the temperature regime into two subregimes
with different scaling behavior. We see that k3T ,=0.3J. Be-
low Ty (regime I), we have v,> v, which means that point
defects decay away faster than the line defects resulting in
straight domain walls with occasional corners (point defects)
and faceted growth of the domain walls. This expectation is
in qualitative agreement with Fig. 2. Above Ty (regime II),

t=320

(b)

FIG. 2. Snapshots at various time instants of Ising (staggered
chirality) domain configuration at kzT=0.1J (a) and at kzT=0.4J
(b). Slow growth of ordering is apparent in the case of kpT=0.1J
compared with that of k37=0.4J. Note the different domain mor-
phology in the two cases with faceted domain walls in the case of
kpT=0.1J and rough domain walls in the case of kzT=0.4J.

on the other hand, we have v,=v,, which can be interpreted
as corresponding to microscopically rough domain walls
with the average distance between neighboring point defects
(corners) along a line defect being kept constant in time, as is
also seen in Fig. 2.

In dual pictures, in terms of point and line defects, we
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FIG. 3. The temperature dependence of various exponents
(Vzs, 1/z;, v, vp). Error bars are a few times the size of the
symbols. See the text for details.

may be able to understand qualitatively the slow growth pro-
cess and small values of 1/zg and 1/z; at the lower tempera-
ture regime (regime I) if we consider the fact that the total
energy of the system not only comes from the total length of
the line defects but also from the long range Coulomb inter-
action between point defects, namely the corners of the line
defects. This means that the system has to pay some amount
of energy (chemical potential) in order to create a pair of
local point defects even without increasing the length of the
domain wall. Therefore at zero temperature an isolated do-
main wall in the shape of a large rectangle cannot change its
shape due to the energy barrier for local change of its shape
(hence they are pinned metastable configurations). This
would explain the zero temperature freezing in the growth

process [14]. At finite but still very low temperature, only
occasional decays of the above-mentioned rectangular shapes
would occur through the thermal activation process and we
expect that the growth would proceed slowly with the growth
exponents increasing as the temperature increases. At higher
temperature (regime II), the barrier energy would now be
easy to overcome (hence rough domain walls), but on the
other hand thermal fluctuations will partly hinder the order-
ing processes, which leads to saturated values of the growth
exponents in regime II.

In summary, we presented simulation results on the order-
ing kinetics of fully frustrated XY models in a two-
dimensional square lattice focusing on the effect of the inter-
action between discrete and continuous symmetry and
corresponding defects on the relaxation and (quasi-) ordering
processes. A more detailed analysis, including staggered
chirality and the autocorrelation functions, will be presented
elsewhere [13]. It would be interesting to investigate the re-
lated but more general case of systems with coupled order
parameters such as Z, X O(N) symmetry in arbitrary dimen-
sions. It would also be of some interest to study the ordering
dynamics of the Ginzburg-Landau model corresponding to
FFXYM in order to see whether that model retains the same
characteristics of domain growth as FFXYM as presented in
this work.
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